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1 Defintion and Problem

Definition 1 (Group-wise zero-concentrated differential privacy). Assume pos-
sible datasets consist of records from domain U , and U can be partitioned into k
fixed, disjoint groups U1, . . . , Uk. Let v, ξ : D → Rk be two functions associating
a dataset to a vector of privacy budgets (one per group). We say a mechanism
M satisfies v, ξ-group-wise zero-concentrated differential privacy (zCDP) if, for
any two datasets D,D′ differing in the addition or removal of a record in Ui,
and for all α > 1, we have:

Dα (M (D) ∥M (D′)) ≤ α · v(D)i + ξ(D)i

Dα (M (D′) ∥M(D)) ≤ α · v(D)i + ξ(D)i

where Dα is the Rényi divergence of order α.

Problem: Let r ∈ (0, 1] be an acceptable level of relative error, and k be the
number of distinct, mutually-exclusive partitions of domain X. Given a dataset
D, let x(D) be a vector containing the count of records in each partition. The
objective is to find a mechanism M which takes in r, k and D, and outputs
x̂(D) such that E [|x(D)i − x̂(D)i|] < r · x(D)i for all i, and satisfies v-group-
wise zCDP where v(D)i is as small as possible for all i. The privacy guarantee
v(D)i should only depend on x(D)i, and should be non-increasing with x(D)i.

2 An Example Algorithm

Algorithm 1. Adding data-dependent noise as a post-processing step.
Require: A dataset D where each data point belongs to one of k groups, a
privacy parameter ρ, and a relative error rate r.
1. Let σ2 = 1/(2ρ)
2. For i = 1 to k do:
3. Let xi be the number of people in D in group i
4. Sample Xi ∼ N

(
xi, σ

2
)
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5. Sample Yi ∼ N
(
Xi, (rXi)

2
)

6. end for
7. return Y1, . . . , Yk

2.1 Accuracy Analysis:

Computing the expectation, we have

E[Yi] = E[E[Yi | Xi]]

= E[Xi] = xi

And for the variance, we get

V[Yi] = E[V[Yi | Xi]] + V[E[Yi | Xi]]

= E[r2X2
i ] + V[Xi]

= r2(x2
i + σ2) + σ2 = r2x2

i + σ2(1 + r2)

Combining both gives that

E [|Yi − xi|] ≤
√

V[Yi]

=
√
r2x2

i + σ2(1 + r2)

≤ rxi + σ
√
1 + r2

2.2 Privacy Analysis:

Attempt 1: We can rewrite Yi = XiZ as the product of two i.i.d Gaussian
random variables, where Xi ∼ N (xi, σ

2) and Z ∼ N (1, r2).
Using Theorem 2.1 from [CYIK16], we get the exact PDF distribution of Yi

given by:

fYi
(y) = exp

(
− x2

i

2σ2
− 1

2r2

)
×

∞∑
n=0

2n∑
m=0

(
2n
m

)
xm
i y2n−m|y|m−n

π(2n)!σn+m+1r3n−m+1
Km−n

(
|y|
σr

)
≜ exp

(
− x2

i

2σ2
− 1

2r2

)
× h(xi, σ, r, y)

where Kν denotes the modified Bessel function of the second kind and order ν.
For a neighbouring dataset, Y ′

i = X ′
iZ where X ′

i ∼ N (xi ± 1, σ2) and Z ∼
N (1, r2).

The PDF distribution of Y ′
i is then given by:

fY ′
i
(y) = exp

(
− (xi ± 1)

2

2σ2
− 1

2r2

)
× h(xi ± 1, σ, r, y)
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Finally, we get that

Dα (Yi∥Y ′
i ) =

1

α− 1
log

(∫ ∞

−∞

(
fYi

(y)

fY ′
i
(y)

)α

fY ′
i
(y) dy

)

=
α

α− 1

1± 2xi

2σ2
+

1

α− 1
log

(∫ ∞

−∞

(
h(xi, σ, r, y)

h(xi ± 1, σ, r, y)

)α

fY ′
i
(y) dy

)
TO DO: Compute an upper bound of the second term.
Attempt 2: We have Xi ∼ N (xi, σ

2) and Yi | Xi ∼ N (Xi, r
2X2

i ).
On the other hand, for a neighbouring dataset, X ′

i ∼ N (xi ± 1, σ2) and

Y ′
i | X ′

i ∼ N (X ′
i, r

2X
′2
i ).

We recall the following theorem:

If PX

PY |X−→ PY and PX

QY |X−→ QY , then

Df (PY ∥QY ) ≤ EX∼PX

[
Df

(
PY |X∥QY |X

)]
.

where Df is an f -divergence.
The idea is to use the theorem, where the input is the iid Gaussian pair

Zi ≜ (Xi, X
′
i), the first channel is PY |Zi

= N (Xi, r
2X2

i ), the second channel is

QY |Zi
= N (X ′

i, r
2X

′2
i ). The marginals are then resp Yi and Y ′

i . Applying the
Theorem gives that

Df (Yi∥Y ′
i ) ≤ E(Xi,X′

i)
[Df (N (Xi, r

2X2
i )∥N (X ′

i, r
2X

′2
i ))].

Unfortunately, the Renyi divergence is not directly an f -divergence (maybe
a link could be found to apply a version of this result).

For now, let us look at just the KL (α = 1), we get that

D1(Yi∥Y ′
i ) ≤ E(Xi,X′

i)

[
D1(N (Xi, r

2X2
i )∥N (X ′

i, r
2X

′2
i ))
]

= E(Xi,X′
i)

[
2 log

(
X ′

i

Xi

)
+

r2X2
i + (Xi −X ′

i)
2

2r2X
′2
i

− 1

2

]
≤ 2 log

(
E
[
X ′

i

Xi

])
+

1

2

(
1 +

1

r2

)
E
[
X2

i

X
′2
i

]
− 1

r2
E
[
Xi

X ′
i

]
+

1

2

(
1

r2
− 1

)
which reduces to computing the expectation of the quotient of two iid Gaus-

sian variables.
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Unfortunately, these expectations do not exist as Ordinary integrals but only
in a Principal Value sense ( linguisticturn comment).

Plugging the formulas of the expectations in the Principal Value sense gives

E
[
X ′

i

Xi

]
= E [X ′

i]E
[
1

Xi

]
= (xi ± 1)

√
2

σ
F

(
xi√
2σ

)

E
[
Xi

X ′
i

]
= E [Xi]E

[
1

X ′
i

]
= (xi)

√
2

σ
F

(
xi ± 1√

2σ

)

E
[
X2

i

X
′2
i

]
= E

[
X2

i

]
E
[

1

X
′2
i

]
=
(
σ2 + x2

i

) 1

2σ2

(√
2 (xi ± 1)

σ
F

(
xi ± 1√

2σ

)
− 1

)

where F is the Dawson function F (x) = e−x2 ∫ x

0
et

2

.
Plugging everything in the upper bound gives an upper bound on the KL.

TO DO: Generalise to α Renyi divergence, and see the dependence on xi (is
the upper bound on the KL decreasing in xi).

3 Another (simpler) algorithm

Algorithm 2. Adding noise directly using x(D)i.
Require: A dataset D where each data point belongs to one of k groups, a
privacy parameter ρ, and a relative error rate r.
1. Let σ2 = 1/(2ρ)
2. For i = 1 to k do:
3. Let xi be the number of people in D in group i

4. Sample Xi ∼ N
(
xi, (rxi)

2
)

6. end for
7. return X1, . . . , Xk

3.1 Accuracy Analysis

We have directly that

E [|Xi − xi|] ≤
√
V[Xi]

=
√

r2x2
i = rxi

3.2 Privacy Analysis

LetXi ∼ N
(
xi, (rxi)

2
)
and for a neighbouring datasetX ′

i ∼ N
(
xi + 1, r2 (xi + 1)

2
)
,

using the formula for renyi divergence between Gaussian random variables, we
get that
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Dα(Xi, X
′
i) = 2 log

(
xi + 1

xi

)
+

1

2 (α− 1)
log

(
x2
i + 2xi + 1

x2
i + α(2xi + 1)

)
+

1

2

α

r2x2
i + αr2(2xi + 1)

≤ 1

2

α

r2x2
i

+ 2 log

(
1 +

1

xi

)
using that α > 1 and r, xi > 0

This means that Algorithm 2 verifies v, ξ-group-wise approximate zCDP,
where

v(D)i =
1

2r2x(D)2i

and

ξ(D)i = 2 log

(
1 +

1

x(D)i

)
.

Indeed the privacy budgets are non-increasing functions of x(D)i.
Comment. In the original post, one reads ”Of course, directly using x(D)i to
determine the scale of the noise for group i leads to a privacy loss which is data
dependent, similarly to e.g. PATE [PAEGT17], and as such should be treated
as a protected value.”

However, any attempt that tries to first estimate x(D)i and then use the
estimated (noisy) counts to add a variance (like in Algorithm 1) will too have a
privacy loss that depends on x(D)i eventually. Thus the comment is not very
clear to me.
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