Open problem - Better privacy guarantees for larger groups

Achraf Azize

July 2023

1 Definition and Problem

Definition 1 (Group-wise zero-concentrated differential privacy). Assume possible datasets consist of records from domain U, and U can be partitioned into k fixed, disjoint groups U_1, \ldots, U_k . Let $v, \xi : \mathcal{D} \to \mathbb{R}^k$ be two functions associating a dataset to a vector of privacy budgets (one per group). We say a mechanism \mathcal{M} satisfies v, ξ -group-wise zero-concentrated differential privacy (zCDP) if, for any two datasets D, D' differing in the addition or removal of a record in U_i , and for all $\alpha > 1$, we have:

 $D_{\alpha} \left(\mathcal{M} \left(D \right) \| \mathcal{M} \left(D' \right) \right) \le \alpha \cdot v(D)_{i} + \xi(D)_{i}$ $D_{\alpha} \left(\mathcal{M} \left(D' \right) \| \mathcal{M}(D) \right) \le \alpha \cdot v(D)_{i} + \xi(D)_{i}$

where D_{α} is the Rényi divergence of order α .

Problem: Let $r \in (0, 1]$ be an acceptable level of relative error, and k be the number of distinct, mutually-exclusive partitions of domain X. Given a dataset D, let x(D) be a vector containing the count of records in each partition. The objective is to find a mechanism \mathcal{M} which takes in r, k and D, and outputs $\hat{x}(D)$ such that $\mathbb{E}[|x(D)_i - \hat{x}(D)_i|] < r \cdot x(D)_i$ for all i, and satisfies v-groupwise zCDP where $v(D)_i$ is as small as possible for all i. The privacy guarantee $v(D)_i$ should only depend on $x(D)_i$, and should be non-increasing with $x(D)_i$.

2 An Example Algorithm

Algorithm 1. Adding data-dependent noise as a post-processing step.

Require: A dataset D where each data point belongs to one of k groups, a privacy parameter ρ , and a relative error rate r.

- 1. Let $\sigma^2 = 1/(2\rho)$
- 2. For i = 1 to k do:
- 3. Let x_i be the number of people in D in group i
- 4. Sample $X_i \sim \mathcal{N}(x_i, \sigma^2)$

5. Sample $Y_i \sim \mathcal{N}\left(X_i, (rX_i)^2\right)$

6. end for

7. return Y_1, \ldots, Y_k

2.1 Accuracy Analysis:

Computing the expectation, we have

$$\mathbb{E}[Y_i] = \mathbb{E}[\mathbb{E}[Y_i \mid X_i]]$$
$$= \mathbb{E}[X_i] = x_i$$

And for the variance, we get

$$\begin{split} \mathbb{V}[Y_i] &= \mathbb{E}[\mathbb{V}[Y_i \mid X_i]] + \mathbb{V}[\mathbb{E}[Y_i \mid X_i]] \\ &= \mathbb{E}[r^2 X_i^2] + \mathbb{V}[X_i] \\ &= r^2 (x_i^2 + \sigma^2) + \sigma^2 = r^2 x_i^2 + \sigma^2 (1 + r^2) \end{split}$$

Combining both gives that

$$\mathbb{E}\left[|Y_i - x_i|\right] \le \sqrt{\mathbb{V}[Y_i]}$$
$$= \sqrt{r^2 x_i^2 + \sigma^2 (1 + r^2)}$$
$$\le r x_i + \sigma \sqrt{1 + r^2}$$

2.2 Privacy Analysis:

Attempt 1: We can rewrite $Y_i = X_i Z$ as the product of two i.i.d Gaussian random variables, where $X_i \sim \mathcal{N}(x_i, \sigma^2)$ and $Z \sim \mathcal{N}(1, r^2)$.

Using Theorem 2.1 from [CYIK16], we get the exact PDF distribution of Y_i given by:

$$f_{Y_i}(y) = \exp\left(-\frac{x_i^2}{2\sigma^2} - \frac{1}{2r^2}\right) \times \sum_{n=0}^{\infty} \sum_{m=0}^{2n} \binom{2n}{m} \frac{x_i^m y^{2n-m} |y|^{m-n}}{\pi (2n)! \sigma^{n+m+1} r^{3n-m+1}} K_{m-n}\left(\frac{|y|}{\sigma r}\right)$$
$$\triangleq \exp\left(-\frac{x_i^2}{2\sigma^2} - \frac{1}{2r^2}\right) \times h(x_i, \sigma, r, y)$$

where K_{ν} denotes the modified Bessel function of the second kind and order ν . For a neighbouring dataset, $Y'_i = X'_i Z$ where $X'_i \sim \mathcal{N}(x_i \pm 1, \sigma^2)$ and $Z \sim \mathcal{N}(1, r^2)$.

The PDF distribution of Y'_i is then given by:

$$f_{Y'_i}(y) = \exp\left(-\frac{(x_i \pm 1)^2}{2\sigma^2} - \frac{1}{2r^2}\right) \times h(x_i \pm 1, \sigma, r, y)$$

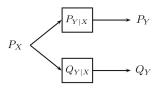
Finally, we get that

$$D_{\alpha}\left(Y_{i} \| Y_{i}^{\prime}\right) = \frac{1}{\alpha - 1} \log \left(\int_{-\infty}^{\infty} \left(\frac{f_{Y_{i}}(y)}{f_{Y_{i}^{\prime}}(y)} \right)^{\alpha} f_{Y_{i}^{\prime}}(y) \, \mathrm{d}y \right)$$
$$= \frac{\alpha}{\alpha - 1} \frac{1 \pm 2x_{i}}{2\sigma^{2}} + \frac{1}{\alpha - 1} \log \left(\int_{-\infty}^{\infty} \left(\frac{h(x_{i}, \sigma, r, y)}{h(x_{i} \pm 1, \sigma, r, y)} \right)^{\alpha} f_{Y_{i}^{\prime}}(y) \, \mathrm{d}y \right)$$

TO DO: Compute an upper bound of the second term.

Attempt 2: We have $X_i \sim \mathcal{N}(x_i, \sigma^2)$ and $Y_i \mid X_i \sim \mathcal{N}(X_i, r^2 X_i^2)$. On the other hand, for a neighbouring dataset, $X'_i \sim \mathcal{N}(x_i \pm 1, \sigma^2)$ and $Y_i' \mid X_i' \sim \mathcal{N}(X_i', r^2 X_i^{'2}).$

We recall the following theorem:



If
$$P_X \xrightarrow{P_{Y|X}} P_Y$$
 and $P_X \xrightarrow{Q_{Y|X}} Q_Y$, then
 $D_f(P_Y || Q_Y) \le \mathbb{E}_{X \sim P_X} \left[D_f(P_{Y|X} || Q_{Y|X}) \right]$

where D_f is an f-divergence.

The idea is to use the theorem, where the input is the iid Gaussian pair $Z_i \triangleq (X_i, X'_i)$, the first channel is $P_{Y|Z_i} = \mathcal{N}(X_i, r^2 X_i^2)$, the second channel is $Q_{Y|Z_i} = \mathcal{N}(X'_i, r^2 X'^2_i)$. The marginals are then resp Y_i and Y'_i . Applying the Theorem gives that

$$D_f(Y_i || Y'_i) \le \mathbb{E}_{(X_i, X'_i)} [D_f(\mathcal{N}(X_i, r^2 X_i^2) || \mathcal{N}(X'_i, r^2 X'_i^2))].$$

Unfortunately, the Renyi divergence is not directly an f-divergence (maybe a link could be found to apply a version of this result).

For now, let us look at just the KL ($\alpha = 1$), we get that

$$D_{1}(Y_{i}||Y_{i}') \leq \mathbb{E}_{(X_{i},X_{i}')} \left[D_{1}(\mathcal{N}(X_{i},r^{2}X_{i}^{2})||\mathcal{N}(X_{i}',r^{2}X_{i}'^{2})) \right] \\ = \mathbb{E}_{(X_{i},X_{i}')} \left[2\log\left(\frac{X_{i}'}{X_{i}}\right) + \frac{r^{2}X_{i}^{2} + (X_{i} - X_{i}')^{2}}{2r^{2}X_{i}'^{2}} - \frac{1}{2} \right] \\ \leq 2\log\left(\mathbb{E}\left[\frac{X_{i}'}{X_{i}}\right]\right) + \frac{1}{2}\left(1 + \frac{1}{r^{2}}\right)\mathbb{E}\left[\frac{X_{i}^{2}}{X_{i}'^{2}}\right] - \frac{1}{r^{2}}\mathbb{E}\left[\frac{X_{i}}{X_{i}'}\right] + \frac{1}{2}\left(\frac{1}{r^{2}} - 1\right)$$

which reduces to computing the expectation of the quotient of two iid Gaussian variables.

Unfortunately, these expectations do not exist as Ordinary integrals but only in a Principal Value sense (linguisticturn comment).

Plugging the formulas of the expectations in the Principal Value sense gives

$$\mathbb{E}\left[\frac{X_i'}{X_i}\right] = \mathbb{E}\left[X_i'\right] \mathbb{E}\left[\frac{1}{X_i}\right] = (x_i \pm 1) \frac{\sqrt{2}}{\sigma} F\left(\frac{x_i}{\sqrt{2}\sigma}\right)$$
$$\mathbb{E}\left[\frac{X_i}{X_i'}\right] = \mathbb{E}\left[X_i\right] \mathbb{E}\left[\frac{1}{X_i'}\right] = (x_i) \frac{\sqrt{2}}{\sigma} F\left(\frac{x_i \pm 1}{\sqrt{2}\sigma}\right)$$
$$\left[\frac{X_i^2}{X_i'^2}\right] = \mathbb{E}\left[X_i^2\right] \mathbb{E}\left[\frac{1}{X_i'^2}\right] = (\sigma^2 + x_i^2) \frac{1}{2\sigma^2} \left(\frac{\sqrt{2}(x_i \pm 1)}{\sigma} F\left(\frac{x_i \pm 1}{\sqrt{2}\sigma}\right) - 1\right)$$

where F is the Dawson function $F(x) = e^{-x^2} \int_0^x e^{t^2}$.

Plugging everything in the upper bound gives an upper bound on the KL. **TO DO:** Generalise to α Renyi divergence, and see the dependence on x_i (is the upper bound on the KL decreasing in x_i).

3 Another (simpler) algorithm

Algorithm 2. Adding noise directly using $x(D)_i$. *Require:* A dataset D where each data point belongs to one of k groups, a privacy parameter ρ , and a relative error rate r.

1. Let $\sigma^2 = 1/(2\rho)$

2. For i = 1 to k do:

3. Let x_i be the number of people in D in group i

4. Sample
$$X_i \sim \mathcal{N}\left(x_i, (rx_i)^2\right)$$

6. end for

 $\mathbb E$

7. return X_1, \ldots, X_k

3.1 Accuracy Analysis

We have directly that

$$\mathbb{E}\left[|X_i - x_i|\right] \le \sqrt{\mathbb{V}[X_i]}$$
$$= \sqrt{r^2 x_i^2} = r x_i$$

3.2 Privacy Analysis

Let $X_i \sim \mathcal{N}\left(x_i, (rx_i)^2\right)$ and for a neighbouring dataset $X'_i \sim \mathcal{N}\left(x_i + 1, r^2 (x_i + 1)^2\right)$, using the formula for renyi divergence between Gaussian random variables, we get that

$$D_{\alpha}(X_{i}, X_{i}') = 2\log\left(\frac{x_{i}+1}{x_{i}}\right) + \frac{1}{2(\alpha-1)}\log\left(\frac{x_{i}^{2}+2x_{i}+1}{x_{i}^{2}+\alpha(2x_{i}+1)}\right) + \frac{1}{2}\frac{\alpha}{r^{2}x_{i}^{2}+\alpha r^{2}(2x_{i}+1)}$$
$$\leq \frac{1}{2}\frac{\alpha}{r^{2}x_{i}^{2}} + 2\log\left(1+\frac{1}{x_{i}}\right)$$

using that $\alpha > 1$ and $r, x_i > 0$

This means that Algorithm 2 verifies v, ξ -group-wise approximate zCDP, where

$$v(D)_i = \frac{1}{2r^2x(D)_i^2}$$

and

$$\xi(D)_i = 2\log\left(1 + \frac{1}{x(D)_i}\right)$$

Indeed the privacy budgets are non-increasing functions of $x(D)_i$. **Comment.** In the original post, one reads "Of course, directly using $x(D)_i$ to determine the scale of the noise for group *i* leads to a privacy loss which is data dependent, similarly to e.g. PATE [PAEGT17], and as such should be treated as a protected value."

However, any attempt that tries to first estimate $x(D)_i$ and then use the estimated (noisy) counts to add a variance (like in Algorithm 1) will too have a privacy loss that depends on $x(D)_i$ eventually. Thus the comment is not very clear to me.

References

[CYIK16] Guolong Cui, Xianxiang Yu, Salvatore Iommelli, and Lingjiang Kong. Exact distribution for the product of two correlated gaussian random variables. *IEEE Signal Processing Letters*, 23(11):1662–1666, 2016.